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We propose a decomposition for time series in components classified by levels
of persistence. Employing this decomposition, we provide empirical evidence that
consumption growth contains predictable components highly correlated with well-known
proxies of consumption variability. These components generate a term-structure of sizable
risk premia. At low frequencies we identify a component correlated with long-run
productivity growth and commanding a yearly premium of approximately 2%. At high
frequencies we identify a component with yearly half-life, which contributes to the equity
premium for another 2%. Accounting for persistence heterogeneity, we obtain an estimate
of the IES strictly above one and robust across subsamples. (JEL G12, E21, E32, E44)

1. Introduction

This paper provides a systematic investigation of the persistence properties
of consumption growth dynamics and proposes a solution to a major problem
in the empirical detection of long-run risk: the lack of statistical power of
the conventional tests used to estimate the low volatility, high-persistence
component. The existence of such a component of consumption growth
has fundamental pricing implications: Agents with Epstein-Zin preferences
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require a compensation for holding cash flows whose future fluctuations are
positively correlated with expected changes in consumption growth, a fact
that, in equilibrium, generates a long-run risk premium. To disentangle these
components, we develop a tool to decompose a time series into layers with
different levels of persistence. These layers do not enlarge the space of shocks
generating the time series, rather they classify them by their half-life, so as to
capture economic phenomena occurring at different time-scales. To exemplify
our methodology, we generate a time series via the aggregation of components,
which are all white noise but one. We show that when the persistent component
contributes for a very small fraction of the total volatility, standard statistical
tests fail to distinguish the time series from a white noise. Our approach, on
the contrary, is successful in detecting the persistent layer hidden in the time
series.

Motivated by this example, we apply our decomposition to the consumption
growth series, and we document that consumption growth has cyclical
components defined at different time-scales. We also investigate the existence
of reasonable and observable economic proxies for the persistent components
filtered out of consumption growth. To search for these proxies, we rely on
time series that are economically significant, characterized by a half-life close
to the one of the components they are to proxy for, and significantly correlated
with such components. In particular, we document a strong correlation between
cyclical consumption growth variations captured by the below-business-cycle
frequency component and long-run productivity growth. This is similar to
Pastor and Veronesi (2006, 2009), Kaltenbrunner and Lochstoer (2010), and
Croce (2010), who find that shifts in the long-run rate of productivity growth
are a key factor in driving the slow-moving consumption components. The
components corresponding to business-cycle frequencies are correlated with
well-known economic indicators of economic activity, such as the term and
the corporate default spreads. The high-frequency components taken together
have a yearly half-life, a value which is close to the half-life of the shocks in
Bansal and Yaron (2004). We identify these high-frequency components with
the well-documented fourth-quarter effect (see, e.g., Jagannathan and Wang
2007; Moller and Rangvid 2012).

Our persistence-based decomposition implies that the contemporaneous
presence of highly persistent components with small volatility and highly
volatile components with low persistence can hide the predictability relations
that exist at specific levels of persistence. We document this fact by showing
that, even if aggregate consumption and dividend growth are unpredictable
by the financial ratios (see Beeler and Campbell 2012), there exist specific
components of consumption and dividends growth that are predicted by the
components of the price-dividend ratio with the same degree of persistence.
Consistent with our methodology, moreover, at each given level of persistence
the forecast occurs over a time horizon dictated by the half-life of the predicted
component. Similarly, we exploit the persistence heterogeneity in consumption
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growth to obtain a set of regressions that link the components with different
degrees of persistence of the risk-free rates to the components with the same
level of persistence of consumption growth. Importantly, the slope must
be the same across levels of persistence and equal to the inverse of the
intertemporal elasticity of substitution (IES). This approach allows us to obtain
an estimate of the IES that is both strictly greater than one and robust across
subsamples.

Are the predictable components of consumption growth actually priced?
We answer this question by analyzing a long-run risk economy in which
the exogenous driving variables are the different layers of persistence in the
consumption growth series. Our asset pricing model allows us to determine the
contribution to the equity premium of these different layers in consumption
growth and to construct a term-structure of risk premia. We document that
not all components are priced. In particular, the total equity premium implied
by our model is determined by the contribution associated with two specific
levels of persistence, one on the low-frequency side of the spectrum and the
other on the high-frequency side. On the low-frequency side, we identify a
thin (in variance) component whose variations occur on time-scales ranging
from 8 to 16 years. This component commands a premium of up to 2%
per year when the risk aversion takes the reasonable value of 7.5 and the
IES is 2.5. On the high-frequency side, we find two short-run predictable
components. These components lie close to each other in the spectrum and
capture fluctuations with a half-life between one-half and two years. For
this reason, we approximate them with a single factor with yearly half-life.
When taken together, these two components contribute to the equity premium
for up to another sizable 2%. From an empirical point of view, therefore,
our persistence-based decomposition generates important implications for the
consumption predictability, the intertemporal elasticity of substitution, and the
equity premium.

Our contribution places naturally in the fast-growing literature beginning
with the seminal paper of Bansal and Yaron (2004), who look at the long-run
regime to explain many of the inconsistencies that affect predictions of dynamic
asset pricing models. Our model, however, differs from the standard long-run
risk economy in terms of what we price. Whereas the long-run risk framework
prices the latent persistent conditional mean of consumption growth, in our
model we price the different components of consumption growth, each one
evolving on a characteristic time-scale. Our focus, therefore, is not just on long-
run risk but rather on the entire term structure of consumption risk. Our paper
also contributes to the long-run risk literature by reconciling the evidence in
Parker and Julliard (2005), Bansal, Dittmar, and Lundblad (2005), and Bansal,
Dittmar, and Kiku (2007), who find long-run risk in consumption and cash flows
to be an important determinant of asset returns, with the evidence presented in
Constantinides and Ghosh (2011) and Beeler and Campbell (2012), who find
instead a reversal of the earlier conclusions.
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Empirical literature has produced contradictory evidence with regard to
the estimation of the intertemporal elasticity of substitution. On the one
hand, Hall (1988) and Campbell and Mankiw (1990) estimate an extremely
small value of IES on U.S. data and Campbell (2003) summarizes these
results and finds similar patterns in international data. On the other hand,
Attanasio and Weber (1993) and Beaudry and van Wincoop (1996) find
values of the IES higher than one using disaggregated cohort-level and
state-level consumption data. Vissing-Jorgensen (2002), moreover, points
out that many consumers do not participate actively in asset markets and
finds that, in household data, the IES is greater than one for asset market
participants. More recently, Avramov and Cederburg (2012) have used a
vector autoregressive approach to long-run risk to estimate an IES of 4.5.
In line with this second stream of literature we present empirical evidence
on the existence of aggregation problems that obscure the relation between
consumption growth and the real interest rate. We show that the use of
disaggregated consumption data are key to finding a value for the IES greater
than one. Our contribution here is to point to persistence heterogeneity in
consumption as another possible aggregation mechanism that produces an IES
greater than one.

Our work is also close to Calvet and Fisher (2007), who investigate the
role of persistence heterogeneity in volatility in a partial equilibrium setup
by means of nonlinear regime switching multifractal models. Moreover, our
decomposition shares the same insight as the (multiplicative) permanent-
transitory decomposition proposed in Hansen and Scheinkman (2009) and
used in Hansen, Heaton, and Li (2008). Differently from their decomposition,
however, we further decompose the time series to extract all the transitory
components with different degrees of persistence present in it. Similar to
Fourier analysis, our decomposition breaks a time series into a number of
distinct components, each of them lying in a particular frequency range. Our
approach, however, retains the simplicity of time-series methods and allows
us to model, analyze, and predict the components of the original time series
using the conventional tools of time-series analysis.

The remainder of the paper is organized as follows: In Section 2.1 we
show how to decompose a time series into components with different levels
of persistence. In Section 2.2 we apply this method to consumption growth.
Section 3.1 and 3.2 revisit the predictability of consumption growth and the
estimation of the intertemporal elasticity of substitution in light of the evidence
showing that consumption growth contains persistent components. Section 3.3
quantifies the contribution of the predictable components to risk premia within
an asset pricing model that accounts for persistence heterogeneity. In Section 4
we verify the robustness of our results. Section 5 concludes. Appendix A
describes the data sources and construction of variables used for the empirical
analysis, and Appendix B provides additional details on the implementation of
our filtering procedure.
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2. Persistence Heterogeneity in Consumption Growth

In this section we document the existence of persistent components in
consumption growth. We base our evidence on a decomposition of a time
series in multiple layers with different degrees of persistence. Our approach
allows us to reject the null “consumption growth is white noise,” to extract its
persistent components and to show that they correlate well with important
macroeconomic and financial variables. These facts suggest an alternative
mechanism of propagation of consumption shocks to asset prices, which we
detail in Section 3.

2.1 Decomposing time series along the persistence dimension
Given a time series {gt }t∈Z, we begin by constructing moving averages π (j )

t of
size 2j :

π
(j )
t =

1

2j

2j−1∑
p=0

gt−p , (1)

where π (0)
t ≡gt . Given the choice of sample size, it is readily observed that

these moving averages satisfy the iterative relation:

π
(j )
t =

π
(j−1)
t +π (j−1)

t−2j−1

2
. (2)

Next, we denote by g(j )
t the difference between moving averages of sizes 2j−1

and 2j , that is,

g
(j )
t =π (j−1)

t −π (j )
t . (3)

Intuitively, g(j )
t captures fluctuations that survive to averaging over 2j−1 terms

but disappear when the average involves 2j terms, that is, fluctuations with half-
life in the interval

[
2j−1,2j

)
. Accordingly, the moving average π (j )

t includes
fluctuations whose half-life exceeds 2j periods.1 From now on, we refer to the

derived time series
{
g

(j )
t

}
t∈Z

as to the component of the original time series

{gt }t∈Z with level of persistence j . Because π (0)
t ≡gt , by summing up over j ,

it follows immediately from (3) that

gt =
J∑
j=1

g
(j )
t +π (J )

t (4)

for any J ≥1. In words, Equation (4) decomposes the time series gt into a sum
of components with half-life belonging to a specific interval, plus a residual
term that represents a long-run average.

1 In the online Technical Appendix, we relate the persistence properties of the series g(j )
t and π (J )

t to their Fourier
spectra. In particular, we show that each of these components lies in a particular frequency range.
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Due to the overlap of the moving averages that define g(j )
t , the decomposition

(4) can lead to a biased evaluation of the persistence of the time series gt .
The bias emerges clearly, for instance, when gt is white noise: In that case,
the components in (4) would exhibit serial correlation due to the mechanical
overlapping of the moving averages, even though there is no persistence in
gt . To address this issue, we select the information in the components g(j )

t and
π

(j )
t in a suitable manner. In particular, because by definition each component
g

(j )
t is a linear combination of the realizations gt , gt−1,...,gt−2j+1, to remove

any spurious serial correlation introduced by the overlapping of the moving
averages, we restrict our attention to the subseries:{

g
(j )
t ,t =k2j ,k∈Z

}
, (5){

π
(j )
t ,t =k2j ,k∈Z

}
.2 (6)

We refer to these subseries as the decimated components at level of persistence
j of the original time series. Clearly, persistence in a decimated component is
not an artifact; rather, it represents an actual fluctuation of the original series
with an half-life in the interval

[
2j−1,2j

)
.

The process of decimation controls for spurious persistence by deleting
from the components g(j )

t and π (j )
t all and only the information irrelevant

to reconstruct the original time series gt . Formally, this follows from
observing that for any J ≥1 one can define a linear, invertible operator T (J )

that maps the decimated components
{
g

(j )
t ,t =k2j ,k∈Z

}
, j =1,...,J , and{

π
(j )
t ,t =k2j ,k∈Z

}
into the time series {gt }t∈Z. To illustrate how this works

for J =2, we first observe that in this case (1) yields

π
(2)
t =

gt +gt−1 +gt−2 +gt−3

4
. (7)

Next, we substitute (2) into (3) and let j =1,2 to obtain

g
(2)
t =

π
(1)
t −π (1)

t−1

2
=

1

2

(
gt +gt−1

2
− gt−2 +gt−3

2

)

g
(1)
t =

π
(0)
t −π (0)

t−1

2
=

(
gt−gt−1

2

)

g
(1)
t−2 =

π
(0)
t−2 −π (0)

t−3

2
=

(
gt−2 −gt−3

2

)
.

(8)

2 These subseries are defined up to a translation factor, which results in 2j degrees of freedom. More precisely

for any h=0,1,...,2j −1, we could sample the realizations
{
g

(j )

h+k2j
,k∈Z

}
,

{
π

(J )
h+k2J

,k∈Z

}
. The approach

described in this section satisfies a translation invariant property, that is, it is independent of the parameter h.
This is why in constructing (5) and (6) we let h=0 without loss of generality.
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We then consider the system obtained by stacking (7) on top of (8), which in
matrix notation becomes⎛⎜⎜⎜⎜⎜⎝

π
(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
1
4

1
4

1
4

1
4

1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0

0 0 1
2 − 1

2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

gt

gt−1

gt−2

gt−3

⎞⎟⎟⎟⎟⎠. (9)

Denoting by T (2) the (4×4) matrix in (9), we notice that T (2) is orthogonal,
that is,�(2) ≡T (2)

(
T (2)

)�
is diagonal. Moreover, the diagonal elements of�(2)

are nonvanishing so that
(
T (2)

)−1
=

(
T (2)

)�(
�(2)

)−1
is well defined, and hence⎛⎜⎜⎜⎜⎝

gt

gt−1

gt−2

gt−3

⎞⎟⎟⎟⎟⎠=
(
T (2))−1

⎛⎜⎜⎜⎜⎜⎝
π

(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2

⎞⎟⎟⎟⎟⎟⎠. (10)

By letting t vary in the set
{
t =k22,k∈Z

}
, Equation (10) shows how

to reconstruct uniquely the entire time series {gt }t∈Z from the decimated

components
{
g

(j )
t ,t =k2j ,k∈Z

}
, j =1,2, and

{
π

(2)
t ,t =k22,k∈Z

}
.3

Figure 1 visualizes how the decomposition (4) uses redundant information to
reconstruct the original time series gt , while the decimated decomposition (10)
reconstructsgt employing optimally the information contained in the decimated
components. Looking, for instance, at any block gt ,gt−1,gt−2,gt−3 the figure
shows how (4) uses twelve data points, whereas (10) uses only four data points;
that is, exactly as many as those in the original block. In this sense, the decimated
components contain the minimal information necessary to reconstruct the time
series. In particular, the decimated decomposition formalized by the operator
T (2) leaves the number of shocks unaltered, while classifying them in terms of
their time of arrival and persistence level, as Panel B of Figure 1 highlights.

2.1.1 Persistence versus white noise: An example. To illustrate the
advantage of decomposing time series along the persistence dimension, we
produce a time series that would be judged as white noise by standard statistical
tests, while it contains a persistent component detected by the decimated
decomposition introduced above. To do so, we directly model the dynamics

3 For an extension of this procedure to any J ≥2 and a recursive algorithm for the construction of the matrix
T (J ), associated to an arbitrary level of persistence J , see, for example, Mallat (1989, 1989). The recursive

construction of T (J ) shows that the diagonal elements of the matrix �(J ) ≡T (J )
(
T (J )

)T
are λ1 =λ2 =1/2J ,

λk =1/2J−j+1, k=2j−1 +1,...,2j , j =2,...,J , a fact useful in developing our statistical test in Section 2.1.2.
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(1)
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(1)
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(1)
3 g

(1)
4 g

(1)
5 g

(1)
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(1)
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(1)
8

...

• • • • • • • • • •
... g

(2)
1 g

(2)
2 g

(2)
3 g

(2)
4 g

(2)
5 g

(2)
6 g

(2)
7 g

(2)
8

...

• • • • • • • • • •
... π

(2)
1 π

(2)
2 π

(2)
3 π

(2)
4 π

(2)
5 π

(2)
6 π

(2)
7 π

(2)
8

...

t

j

Redundant decomposition

• • • • • • • • • •
... g1 g2 g3 g4 g5 g6 g7 g8 ...

︸ ︷︷ ︸

Block 1
︸ ︷︷ ︸

Block 2

• • • • •
... g

(1)
2 g

(1)
4 g

(1)
6 g

(1)
8

•••
... g

(2)
4 g

(2)
8

•••
... π

(2)
4 π

(2)
8

t

j

Decimated decomposition

(a)

(b)

Figure 1
Redundant versus decimated decomposition
This figure displays the components of the time series gt before (Panel A) and after decimation (Panel B).

of the decimated components defined in (5) and (6) and then use the (inverse
of the) operator T (J ) to reconstruct the process gt . We assume, in particular,
that all decimated components are independent normal innovations, except for
one which follows an autoregressive process on the time domain defined by
decimation. More formally, for t =k2j ,k∈Z, we let

g
(j )
t =ε(j )

t , ∀j <J ∗

g
(J ∗)

t+2J∗ =ρJ ∗g(J ∗)
t +ε(J ∗)

t+2J∗ , (11)

π
(J ∗)
t =η(J ∗)

t

with ε
(j )
t ∼N(0,2−j ), j <J ∗, ε

(J ∗)
t ∼N(0,2−J ∗

(1−ρ2
J ∗ )), and η

(J ∗)
t ∼

N(0,2−J ∗
). Finally, we assume that the serially independent innovations

ε
(j )
t , ε(j ′)

t are uncorrelated for j 
=j ′ and that ε(j )
t is uncorrelated with η(J ∗)

t for
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all j as well, that is, the decimated components are independent across levels
of persistence.

Observe that by construction Var(gt )=
∑J ∗

j=1Var
(
g

(j )
t

)
+Var(π (J ∗)

t )=∑J ∗
j=12−j +2−J ∗

=1 so that the persistent component g(J ∗)
t explains a fraction

2−J ∗
of the total variability of gt .4 As J ∗ increases, therefore, the predictable

component accounts for a small percentage of the total variance of gt .
The point of this example is to show that the persistent component can be

obscured by the layers of serially independent innovations unless a suitable
filtering procedure is used to disentangle the different degrees of persistence.
To this end we let J ∗ =4 so that the persistent component accounts only for 6%
of the total variance; we set ρJ ∗ =0.5; and we simulate the components using
the dynamics described in (11). We then use the inverse of the matrix T (J )

introduced in (9), here for J =4, to reconstruct the series gt using the procedure
described in the previous section. Figure 2 displays the results of this exercise.
The top left panel shows the reconstructed time series gt . Below the top panel
we report the components g(j )

t , j =1,...,4 and π (4)
t . We report on the right

panels the autocorrelation functions associated with these series to assess the
presence of autocorrelation at individual lags. The autocorrelation function of
the series gt clearly resembles the one of a white noise process.5 In fact, the
Kolmogorov-Smirnov test to determine if the series gt comes from a standard
normal distribution cannot reject the null hypothesis at a 70% significance
level. Hence, this statistical method fails to detect the dependency pattern,
which, by construction, is in the data. The precise sense in which the persistence
induced in gt by g(4)

t is obscured is that it is dominated by the nonpredictable,
large variance components. It is interesting to observe that this conclusion is
robust to a wide range of parameters choices. This is so because when J ∗
increases, the total variance explained by the persistent component decreases,
and the set of possible values of ρJ ∗ for which the persistent component still
goes undetected converges to the open interval (−1,1). For the case J ∗ =4,
for instance, the range of ρJ ∗ for which the test fails to detect the persistent
component is approximately (−0.8,0.8).

In sum, standard statistical tests that focus on the aggregate behavior of the
time series fail to detect the component localized at a specific level of persistence
and too often accept the white noise hypothesis. How to detect empirically the

4 This is so because our example is tailored in such a way that Var
(
T

(
J∗)

X

(
J∗)
t

)
=�

(
J∗)

, where X
(
J∗)
t is the

vector containing the 2J observations of our time series up to time t , and�
(
J∗)

is the matrix defined in footnote 3.

This implies that Var
(
X

(
J∗)
t

)
=Var

((
T

(
J∗))−1

T (J )X

(
J∗)
t

)
=I , where I is the identity matrix, highlighting

the fact that the correlation of the time series manifests itself at a time-scale greater that 2J
∗

periods.

5 We use a Ljung-Box Q-test to test for autocorrelation at multiple lags jointly. We cannot reject the null hypothesis
that the first m=1,2,...,6 autocorrelations are jointly zero. Furthermore, the degree of over rejection magnifies
significantly at different lag lengths.
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existence of persistence in an apparently white noise series is covered in the
next section.

2.1.2 Detecting small but persistent components. We construct a test
that distinguishes a white noise process from a process whose decimated
components are serially correlated. Our test, which builds on a new family
of tests for serial correlation as introduced by Gencay and Signori (2012), has
desirable size and power in small samples.

We assume {gt } to be weakly stationary with E[gt ]=0, V ar(gt )=σ 2 and we

denote with
(
X

(J )
T

)ᵀ
=[gT ,gT−1,...,g1] the vector collecting the observations

of {gt }.6 We then use the operator T (J ) introduced in (9) to obtain a
variance decomposition for the series gt . To do so, we express the sample
variance of gt as the sum of the variances of its decimated components

g(j) =
[
g

(j )
2j
,...,g

(j )
k·2j ,...,g

(j )
T

]ᵀ
:

(
X

(J )
T

)ᵀ
X

(J )
T

T
=

((
�(J )

)−1/2T (J )X
(J )
T

)ᵀ((
�(J )

)−1/2T (J )X
(J )
T

)
T

=

∑J
j=12j ·(g(j))ᵀg(j)

T

The first equality exploits the fact that the matrix
(
�(J )

)−1/2T (J ) is orthonormal,
whereas the second equality follows upon recalling the expression of the
diagonal elements of the matrix �(J ).7 The presence of the factor 2j in
our variance decomposition is readily understood upon recalling that, due to
decimation, the component g(j) with level of persistence j has in fact T/2j

observations so that its sample variance is exactly (g(j))ᵀg(j)/
(
T/2j

)
.

Our test statistics build on the above variance decomposition and rely on the
comparison of the contribution to total variance of the different components of
a white noise process on one side and of a process with serially correlated
decimated components on the other side. Specifically, we employ as test
statistics the ratio of the sample variance of the decimated components to the
sample variance of the time series, that is,

ξ̂j =
2j ·(g(j))ᵀg(j)(
X

(J )
T

)ᵀ
X

(J )
T

.

Letting Cov(gt ,gt−k)/V ar(gt )≡ρk , we test the null hypothesis ρk =0 for all
k≥1 against ρk 
=0 for some k≥1. It can now be shown that, under the null

6 The dimensionality of the sample is dictated by the decimated procedure necessary to avoid spurious correlation.
In this section we assume to have a sample of T =2J observations. How to deal with this issue in the empirical
applications is discussed in Appendix B.

7 See footnote 3. Observe also that the variance decomposition of gt should include the term (π (J ))ᵀπ (J ). Given
the stationarity assumption and as long as the sample is large enough, it follows from (1) that π (J ) is an unbiased
estimator of the population mean which by assumption is zero. This is why we disregard this term.
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of no serial correlation and for a suitable choice of rescaling factors aj , the
properly rescaled variance ratio statistics converge in distribution to a standard
normal, that is,8 √

T

aj

(
ξ̂j − 1

2j

)
d→N (0,1) . (12)

In other words, because the distribution of the variance of the components of
a white noise process is uniform in the degree of persistence, and because the
component at level of persistence j captures fluctuations in the range [2j−1,2j ),
then, under the null, the suitably rescaled deviation of the variance ratio ξ̂j from
its large sample mean 1/2j approaches a standard normal.9 The suitable choice
of rescaling factors guarantees that this property holds independently of the
degree of persistence of the decimated components.

We now investigate by means of Monte Carlo simulations the finite sample
performance of our variance ratio test in the framework of the example
introduced in the previous section (see (11)). In this simulation exercise we
set T =256 so that the simulated sample size matches the postwar quarterly
data sample used in the empirical analysis carried on in the rest of the
paper. We choose J ∗ =6, and we let ρJ ∗ be either 0.2 or 0.4. We assume
that the variance of the persistent component explains alternatively 3%,5%,
and 7% of total variance. We remark that, for any such combination of
parameters, the moments of the simulated series are compatible with those
of actual consumption growth in the postwar quarterly sample. In particular,
the simulated series has volatility of about 1%, first-order autocorrelation less
than 0.1, and higher-order autocorrelations that are not significant based on a
Ljung-Box test.10

For each simulation we compute the rescaled test statistics ξ̂j , and we
carry out a two-tailed test. We repeat this experiment N =5,000 times, and
in Table 1 we report for each level of persistence j the probability of
rejecting the null.11 Table 1, Panel A, shows that, when the alternative is a
process with a serially correlated decimated component, the variance ratio
test ξ̂j displays strong power exactly at the time-scale at which the persistent
component is localized. In particular, the test statistics ξ̂6 has a rejection

8 To establish this fact, we apply Theorem 10 in Gencay and Signori (2012) to our decimated components. The
details of the derivation can be found in the online Technical Appendix. To compute the values of aj for different
resolution scales, we use Corollary 12 in Gencay and Signori (2012).

9 We are implicitly relying on the relation between the spectral density function Sg (f ) and the variance by which the

contribution of the frequencies in a small interval
f =[1/2j−1,1/2j ] is approximately Sg (f )
f . In particular,
the spectral density function of an uncorrelated process is constant.

10 In the online Technical Appendix, we also report the results for the case T =128, J ∗ =4, ρJ∗ =0.2, or ρJ∗ =0.4,
which closely resembles our longer annual data sample.

11 We adjust the empirical power for variations in the empirical size, and we compute the rejection rate with respect
to a 5% empirical size.
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Table 1
Rejection rates under the null hypothesis

Panel A: T =256, J ∗ =6

Persistence level j = 1 2 3 4 5 6 7

ρJ∗ Var(g(J∗)
t )/Var(gt )

0.2 0.03 0.041 0.051 0.049 0.049 0.043 0.212 0.055
0.2 0.05 0.042 0.048 0.057 0.041 0.052 0.457 0.043
0.2 0.07 0.043 0.060 0.051 0.039 0.054 0.604 0.045
0.4 0.03 0.039 0.050 0.048 0.044 0.047 0.200 0.042
0.4 0.05 0.036 0.064 0.049 0.041 0.045 0.416 0.051
0.4 0.07 0.051 0.062 0.046 0.054 0.052 0.554 0.046

Panel B: T =2048, J ∗ =6

Persistence level j = 1 2 3 4 5 6 7

ρJ∗ Var(g(J∗)
t )/Var(gt )

0.2 0.03 0.037 0.047 0.051 0.060 0.046 0.761 0.055
0.2 0.05 0.061 0.096 0.069 0.051 0.052 0.991 0.043
0.2 0.07 0.081 0.091 0.106 0.060 0.047 0.997 0.053
0.4 0.03 0.050 0.054 0.058 0.055 0.038 0.710 0.053
0.4 0.05 0.063 0.093 0.076 0.048 0.046 0.982 0.055
0.4 0.07 0.080 0.095 0.078 0.068 0.054 0.995 0.051

This table reports the rejection probabilities of our variance ratio test with nominal levels of 5% against the
multiscale autoregressive process. The null hypotheses is that the process gt is white noise. We simulate T
observation from a multiscale autoregressive process in which the only persistent component is the one at level
J ∗. All simulations are based on 5,000 replications.

rate between 20% and 60% (depending on the variance of the persistent
component) even in a small sample of 256 observations. By looking at the
i.i.d components, we see that our variance ratio test statistics ξ̂j , j 
=6 do not
overreject the null hypotheses. Overall, our test has desirable size and power
in small samples. Finally, Table 1, Panel B, reports results from a large sample
simulation with T =2,048 observations. From this table it appears clear that
the power of the test increases steadily with the sample size, approaching one
in population.

This Monte Carlo exercise shows that our variance ratio test has good size
and power properties against the alternative of a process with a persistent
component localized at a given level j . Instead of looking at the aggregate
behavior of the time series, as it is typically done in standard portmanteau tests
for serial correlation, this test filters out the components with different degrees
of persistence and exploits the fact that for a serially correlated process each
component contributes for a different percentage to the variance of the process.
This persistence localization feature is what determines the small sample power
improvements of our test.

2.1.3 Determining the optimal number of components. From a practical
point of view a crucial issue is to determine when to stop the extraction of
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Table 2
The variance ratio test for consumption growth

Persistence level j =

1 2 3 4 5 6 7√
T
aj

(
ξ̂j − 1

2j

)
−4.38 −1.86 1.22 3.04 3.05 3.53 0.97

This table reports the rescaled variance ratio statistics for the consumption growth series. Bold values reject the
null hypothesis of no serial correlation at a 95% confidence level.

the components of a nonwhite noise series. This issue is solved by framing
it as a test for the existence of a maximum degree of persistence, based on a

sequential analysis of the decimated series
{
π

(J )
t ,t =k2J ,k∈Z

}
, J =1,2,...,

defined in (6). Recall that π (J )
t by definition incorporates the fluctuations of the

time series with persistence greater than 2J periods, if there are any. Therefore,
the existence of a maximum degree of persistence in the original series gt is
equivalent to the existence of J such that π (J )

t is white noise.
Given this property, the criterion to determine the optimal number of

components to be extracted from a given sample consists of applying
sequentially our variance ratio test to the series π (J )

t , J =1,2,... stopping the
iteration at the smallest J for which we cannot reject that π (J )

t is white noise.12

The intuition behind our criterion is that the optimal number of components to
be extracted is the result of optimizing the trade-off between the volatility of
a component and its degree of persistence. Our sequential variance ratio test
achieves this aim exactly by relying on these two key dimensions. A standard
factor analysis approach, on the contrary, would fail to select the right number of
components, because in relying on the sole evidence of total variance explained,
it would miss the persistence dimension of the problem.

2.2 Filtering and identifying the consumption components
Our variance ratio test shows that consumption growth is not a white noise
process.13 Table 2 reports the rescaled variance ratio statistics for different
levels of persistence. In this table bold values represent rejection at the 95%
confidence level. Inspecting the table, we see that a white noise model for
consumption growth is rejected at multiple levels of persistence.

This evidence implies that consumption growth contains persistent
components. We determine the optimal number of components to be extracted
using the criteria developed in the previous section. Recalling (1) and given
the length of our postwar quarterly data sample, it is readily seen that π (8)

t is
the sample mean of gt so that we apply our test to π (J )

t , J =1,2,...,7. Table 3

12 Clearly, if in a given sample of T observations the null π (J )
t is white noise is rejected for all J =1,...,

⌊
log2T

⌋
,

then the conclusion is that the maximum degree of persistence, if it exists, exceeds
⌊

log2T
⌋
.

13 Appendix A describes the data sources and construction of variables used for the empirical analysis.
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Table 3
Determining the optimal number of components

Scale k= 1 2 3 4 5 6 7

π (1) −6.29 −0.38 2.88 2.12 1.22 −0.77 −0.20
π (2) −4.65 −0.15 0.26 0.05 −1.52 −0.29
π (3) −3.28 −2.15 −1.40 −2.57 −0.44
π (4) −3.15 −2.59 −4.04 −0.65
π (5) −0.31 −5.59 −0.98
π (6) −3.56 −1.50
π (7) 1

This table reports the results of applying the variance ratio test sequentially to the series π (J ), J =1,2,...,7.
Bold values reject the null hypothesis of no serial correlation at a 95% confidence level. The first row contains

the rescaled test statistics for π (1)
t , the second row contains the test statistics for π (2)

t and so on. Observe that

the component at level of persistence k=1,2,... extracted from π
(J )
t coincides with the component at level of

persistence j =J +k of the original time series.

reports the statistics ξ̂ (J )
j for each of the series π (J )

t , J =1,...,7, with bold
values denoting rejection at the 95% confidence level.14 The first row contains
the rescaled test statistics for π (1)

t , the second row contains the test statistics for
π

(2)
t , and so on. To determine the maximum degree of persistence, we search

for the first row J that does not contain bold values, that is, the first J for which
we cannot reject π (J )

t being white noise. The test statistics in Table 3 rejects
π

(J )
t is white noise for J =1,...,6.
In particular, our test shows that it is suboptimal to analyze only the first

five components g(j )
t of the original series, that is, the ones with half-life, and

hence persistence, not exceeding eight years. This is so because π (5)
t , which

incorporates the fluctuations of the time series with persistence greater than 25 =
32 quarters, is not white noise as highlighted by the test statistics ξ̂ (5)

k , k=2. The

test statistics ξ̂ (6)
k , k=1, associated with π (6)

t hints also at the presence of even
longer fluctuations with half-life between 16 and 32 years. In this case, however,
the evidence is not as strong as the one forπ (5) given the sparsity of data. Finally,
the value taken by the test statistics applied to π (7)

t denotes that no further
information can be extracted because the entire sample has been saturated.
In summary, our evidence strongly supports the view that the persistence of
consumption growth is not exhausted at business-cycle frequencies.

14 Specifically, our test statistics ξ̂ (J )
j

follows from (12) upon replacing ξ̂j with with the ratio of the sample variance

of the decimated component g(j) to the sample variance of the series π (J )
t , that is,

ξ̂
(J )
j

=
2j−J ·(g(j))ᵀg(j)(

π (J )
)ᵀ

π (J )

for j >J . This is so because the recursive definition of components in (3) implies that the component at level of

persistence k=1,2... extracted from π
(J )
t coincides with the component at a level of persistence j =J +k of the

original time series.
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Based on our sequential criterion, we extract and analyze the components
of consumption growth g

(j )
t , j =1,...,7. Because the first component g(1)

t

resembles clearly a statistical (random) noise, we identify it with a
contemporaneous i.i.d consumption shock and therefore we concentrate
our analysis on the components with level of persistence j =2,...,7. To
investigate the existence of reasonable economic proxies for these consumption
components, we search for time series that are economically significant,
characterized by a half-life close to the one of the components they are to
proxy for, and significantly correlated with such components.

The second and third components g(2)
t and g(3)

t capture fluctuations with
a half-life between one-half and two years. One way to identify these
two components with observable economic factors is to follow the lead of
Jagannathan and Wang (2007) and Moller and Rangvid (2012), who analyze
the ability of the fourth-quarter consumption growth rate to predict expected
excess returns on stocks. Importantly, this variable aims at capturing economic
and financial choices happening with yearly frequency. Figure 3 reports the
series g(2)

t and the one used by Moller and Rangvid (2012). Quite remarkably
the correlation between these two series is 0.60 in our sample period. Moreover,
if the component g(3)

t is added to the component g(2)
t , the correlation rises to

0.72, thus hinting at the presence of a common high-frequency factor with a
half-life of about one year.15 Interestingly, this half-life is right at the boundary
between the fluctuations’intervals captured by the second and third component.

The intuition behind Jagannathan and Wang (2007) and Moller and Rangvid
(2012) is that due to cultural and institutional features (such as Christmas,
end-of-year bonuses and the tax consequences of capital gains and losses)
consumption and investment decisions are aligned in the fourth quarter. Our
second and third components taken together seem to be good candidates to
capture this alignment.

As for the fourth and fifth components g(4)
t and g(5)

t , taken together they
capture fluctuations in consumption growth lasting from two to eight years.
Since Burns and Mitchell (1946), it is widely accepted that the frequencies
of business-cycle fluctuations in economic activity belong to this interval. To
identify g(4)

t and g(5)
t , we look therefore at indicators of the business cycle, such

as the term spread, that is, the slope of the Treasury yield curve defined as the
difference between the ten-year constant-maturity yield and the three-month
constant-maturity Treasury yield, and the Baa-Aaa credit spread. It is well-
documented that movements in these variables are related to the dynamics of
the business cycle. In particular, the term spread and the default spread are low
around business-cycle peaks and high near troughs (see Fama and French 1989;
Estrella and Hardouvelis 1991). Consistent with this idea, we find a strong

15 We also use the fourth-quarter year-over-year (Q4-Q4) consumption growth measure of Jagannathan and Wang

(2007). In this case the correlation with the second component g(2)
t is 42% and raises to 50% when g(3)

t is added.
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Figure 3
Consumption persistence and the fourth quarter effect

This figure displays the component with level of persistence j =2 of consumption growth, g(2)
t , along with the

real consumption from the third quarter of a calendar year to the fourth quarter as suggested in Moller and
Rangvid (2012).

negative correlation between the sum of the fourth and fifth components of
consumption growth and these indicators. In particular, this correlation ranges
from a negative 30% in the case of the term spread to 45% in the case of the
default spread. This fact is documented in Figure 4.

We now turn to the sixth component of consumption growth, g(6)
t , which

is a slow-moving series with a half-life of about eight years. To search for
a valid proxy for this component, we follow the literature on long-run risk
with production (see, e.g., Kaltenbrunner and Lochstoer 2010; Croce 2010)
and investigate whether shocks to productivity growth can explain these
persistent fluctuations in consumption. Figure 5 plots the sixth component
of consumption growth together with the sixth component filtered out of the
multifactor productivity growth index (TFP). The correlation between the two
series is a sound 0.61, giving further support to the idea that highly persistent
time-variation in (components of) consumption growth reflects very persistent
technological shocks.

Figure 5 shows that the sixth component filtered out of TFP mimics the
behavior of U.S. output growth over the postwar period. In particular, the
sustained high-output growth during the early to late 1960s was followed by
output growth low on average (from the early 1970s to the early 1980s), which in
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Figure 4
Consumption persistence and business-cycle indicators

This figure displays the sum of the components with level of persistence j =4,5 of consumption growth, g(4)
t and

g
(5)
t , along with the the term spread (top panel) and the Baa-Aaa credit spread (bottom panel). We use 24/4=4

years of data at the beginning of the sample to initialize the filtering procedure.

turn was followed by a return to strong growth since the mid-1990s. Therefore,
the fluctuations in the sixth component of TFP growth, which have an half-life
in between eight and sixteen years, represent a good proxy for the transitions
of the U.S. economy from periods of robust growth to periods of relative
stagnation. This evidence is strongly in line with Comin and Gertler (2006),
who find support for significant medium-frequency oscillations in the U.S.
economy corresponding to frequencies between 32 and 200 quarters, and with
Garleanu, Panageas, and Yu (2012), who show that predictable components of
consumption that occur at cycles between ten and fifteen years are due to the
presence of large infrequent embodied technology shocks.

As for the identification of the seventh component, we look at demographic
trends as a possible economic proxy. Importantly, live births in the United
States have featured alternating twenty-year periods of boom and busts, and
therefore are consistent with the half-life of our seventh component (see, e.g.,
Geanakoplos, Magill, and Quinzii 2004). In the full sample, the correlation
between the seventh component of consumption growth and the ratio of middle-
aged population to population of young adults (the so-called MY ratio) is equal
to 0.3. The demographic variable still leaves place for unexplained variability
in the slow-moving component of consumption growth. Also, the sparsity of
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Figure 5
Consumption persistence and total factor productivity

This figure displays the component with level of persistence j =6 of consumption growth, g(6)
t , and the component

of total factor productivity,
TFP (6)
t . We use 26/4=16 years of data at the beginning of the sample to initialize

the filtering procedure.

the data in this case makes the identification of this component less strong than
the previous ones.

In summary, three main economic drivers of the persistence in consumption
growth emerge from our empirical analysis. As expected, we find support for
one high-frequency component with a yearly half-life and for one that correlates
with business-cycle indicators. Along with these two drivers, however, we find
strong evidence for a persistent component in consumption with fluctuations
occurring over a longer time frame than the one typically considered in
conventional business-cycle analysis. Whereas conventional business-cycle
detrending methods would remove this component from the analysis by
sweeping it into the trend, our persistence-based decomposition brings it to
life. In the next section, we show that this persistent component plays a crucial
role in financial valuation.

3. Persistence Heterogeneity, Predictability, and Long-Run Valuation

The ability of the price-dividend ratio to predict consumption growth is a key
requirement of the long-run risk literature (see, e.g., Bansal and Yaron 2004;
Beeler and Campbell 2012). This requirement, however, is empirically rejected.
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Figure 6
Consumption growth and the price-dividend ratio
This figure displays the series of U.S. consumption growth (nondurables and services) from the Bureau of
Economic Analysis and the log price-dividend ratio (dashed line).

On the one hand, in fact, the price-dividend is (close to) a unit root process,
as it is well-documented in the literature (see, e.g., Torous, Valkanov, and Yan
2004; Campbell and Yogo 2006; Lettau and Nieuwerburgh 2008). On the other
hand, consumption growth closely resembles a white noise and therefore it
does not share the high persistence of the price-dividend ratio. This point is
synthesized in Figure 6, which displays the very different statistical behavior of
the demeaned price-dividend and consumption growth series. The figure shows
that over the sample 1947Q2–2011Q4 the price-dividend ratio has crossed its
mean value much less often than consumption growth. The intervals between
crossings for the price-dividend ratio range from one year to twenty years,
the twenty-year interval being the one falling between 1950 and 1970.16 The
persistence of consumption growth, however, is only moderate; the half-life of
consumption growth shocks is one year.17

16 On a different sample Campbell and Shiller (2001) report that the price-dividend ratio has crossed its mean value
only 29 times since 1872.

17 Similarly, Paseka and Theocharides (2010) find that the persistence of the latent mean consumption growth
corresponds to a half-life of about 1.3 years for the 1934–2005 period.
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To reconcile this empirical evidence with the long-run risk framework,
we exploit the fact, documented in the previous section, that consumption
growth contains layers with different levels of persistence. The highly persistent
components indeed contribute for a very small fraction of the total volatility
of aggregate consumption growth, and yet they are predictable by the highly
persistent components of the financial ratios. Therefore, the contemporaneous
presence in the same time series of components with different level of
persistence and volatility hides the predictability relation that holds for specific
components.

3.1 Predictability of consumption and dividend growth under
persistence heterogeneity

To test the ability of the components of financial ratios to predict the components
of consumption growth with the same level of persistence, we run the following
regressions:

g
(j )
t+2j

=β0,j +βg1,j z
(j )
m,t +ε

(j )
t+2j

(13)

g
(j )
t+2j

= β̃0,j + β̃g1,j z
(j )
a,t +w

(j )
t+2j

where z(j )
a,t and z(j )

m,t denote the components with level of persistence j of
the price-consumption and price-dividend series, respectively.18,19 We remark
that, differently from Beeler and Campbell (2012), who focus on the aggregate
time series, we analyze instead predictability at different levels of persistence.
Results for the quarterly sample are reported in Tables 4 and 5. Table 4 shows
that for the consumption components with levels of persistence j =2,6, the
coefficients on the price-dividend ratio are statistically significant at the 5%
level. The sixth component accounts for a great part of the variation in the
future consumption growth at the corresponding scale, with the R2 being
16%. In summary, the components of the price-dividend ratio that actually
lead the corresponding consumption growth components have cycles whose
length belongs to the intervals [1/2 ,1] and [8 ,16], measured in years.

18 The component-wise regressions (13) and (14) can be related to the forward-backward regressions first suggested
in Bandi and Perron (2008). Bandi et al. (2013) formally explore the link between these two approaches.

19 Regressions (13) and (14) are estimated using the full sample instead of the decimated components. The translation
invariance property of the dynamics (see footnote 2) guarantees that the OLS coefficients are unbiased. The
residuals, however, can be correlated over time. To address this fact we compute the standard errors using
heteroscedasticity and autocorrelation consistent (HAC) estimators. Because the choice of bandwidth for HAC
estimators depends on the assumed correlation and heteroscedasticity structure, if one knows the pattern of
correlation and heteroscedasticity, formulas that impose this knowledge can work better in small samples. Given
our decomposition of a time series, we know that spurious autocorrelation at level of persistence j emerges as a
result of the 2j −1 overlapping data.Analogously to Cochrane and Piazzesi (2005) we therefore ignore conditional
heteroscedasticity, and we impose the idea that error correlation is due only to overlapping observations of
homoscedastic forecast errors. In particular, we use a bandwidth equal to the overlap 2j −1 at level of persistence
j . Alternatively, we also use the Hansen and Hodrick (1980) estimator that corrects “nonparametrically” for
arbitrary error correlation and conditional heteroscedasticity. Conclusions are almost identical to the ones reported
in the main text.
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Table 4
Predictability of consumption components by the price-dividend ratio

Persistence level j

Variable 1 2 3 4 5 6 7
0.34 0.69 0.49 −0.20 0.17 0.34 0.06

pd
(j )
t (0.67) (2.01) (1.27) (−0.46) (0.45) (2.46) (1.13)

[0.00] [0.03] [0.03] [0.01] [0.02] [0.16] [0.11]

This table reports the results of predictive regressions of the components of consumption growth g(j )

t+2j
on the

components of the (log) price-dividend ratio pd(j )
t . For each regression, the table reports OLS estimates of the

regressors, Hansen and Hodrick corrected t-statistics in parentheses, and adjustedR2 statistics in square brackets.
Significant coefficients at the 5% level are highlighted in bold. The estimated slope coefficients are multiplied
by 100. The effective sample is quarterly and spans the period 1947Q2–2011Q4.

Table 5
Predictability of consumption components by the price-consumption ratio

Persistence level j

Variable 1 2 3 4 5 6 7

0.38 0.41 0.41 −0.05 0.27 0.21 0.05

pc
(j )
t (1.09) (1.40) (2.11) (−0.19) (1.00) (1.98) (0.85)

[0.00] [0.02] [0.04] [0.00] [0.08] [0.08] [0.07]

This table reports the results of predictive regressions of the components of consumption growth g(j )

t+2j
on the

components of (log) price-consumption ratio pc(j )
t . For each regression, the table reports OLS estimates of the

regressors, Hansen and Hodrick corrected t-statistics in parentheses, and adjustedR2 statistics in square brackets.
Significant coefficients at the 5% level are highlighted in bold. The estimated slope coefficients are multiplied
by 100. The effective sample is quarterly and spans the period 1947Q2–2011Q4.

Table 5 shows that the component of consumption growth with level of
persistence j =6 is predicted also by the corresponding component of the
price-consumption ratio. When using the price-consumption ratio on the right-
hand side, moreover, the component with level of persistence j =3 becomes
significant at the 5% level.

In summary, on the high-frequency part of the spectrum, the second
component is found to be predictable when using the price-dividend ratio,
whereas the third component is significant when using the price-consumption
ratio. On the low-frequency part, instead, the sixth component is the only
one that is significant, and it is so both for the price-dividend and the price-
consumption ratios.As for the components with degree of persistence j =1,4,5,
they are statistically insignificant in the regressions (13).

A second set of predictive regressions is obtained by examining at the ability
of the financial ratios to forecast cash flows. In particular, in extending the
standard long-run risk model to our persistence heterogeneity framework,
one would expect that those components of financial ratios that are useful
in forecasting the components of consumption growth should also forecast
variations at the same levels of persistence in cash flows. We test these
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Table 6
Predictability of dividend growth components by the price-dividend ratio

Persistence level j

Variable 1 2 3 4 5 6 7

3.11 2.81 4.64 2.67 0.27 1.30 0.77

pd
(j )
t (1.66) (1.85) (2.82) (1.39) (0.13) (2.28) (1.17)

[0.01] [0.03] [0.11] [0.07] [0.00] [0.14] [0.14]

This table reports the results of predictive regressions of the components of dividend growth gd(j )

t+2j
on the

components of (log) price-dividend ratio pd(j )
t . For each regression, the table reports OLS estimates of the

regressors, Hansen and Hodrick corrected t-statistics in parentheses, and adjustedR2 statistics in square brackets.
Significant coefficients at the 5% level are highlighted in bold. The estimated slope coefficients are multiplied
by 100. The sample is quarterly and spans the period 1947Q2–2011Q4.

implications by running the following set of regressions:

gd
(j )
t+2j

=βgd0,j +βgd1,j z
(j )
m,t +ν

(j )
t+2j

(14)

gd
(j )
t+2j

= β̃gd0,j + β̃gd1,j z
(j )
a,t +η

(j )
t+2j

,

where for the left-hand side we use cash dividends following much of the
earlier literature (see, for example, Cochrane 1992). The results reported in
Table 6 show that the components of dividend growth that are predictable by
the financial ratios are those with levels of persistence j =2,3,6, in line with
the results found for the components of consumption growth.20

The evidence presented in this section shows that consumption growth does
contain cyclical components that are predictable by financial ratios. Coupling
this componentwise predictability with the evidence in Section 2.2, we can
conclude that the components of consumption growth that are predictable
are also highly correlated with well-known structural drivers of consumption
variability. On the longest side, long-run productivity growth is correlated
with the component describing consumption growth variations that occur on
time-scales that range between eight and sixteen years. On the shortest side,
we identify a high-frequency predictable component with a yearly half-life
with the well-documented fourth-quarter effect. The ultimate relevance of the
predictability effects in the components of consumption and dividends is related
to the ability of these “thin persistent effects” to generate sizable risk premia. To
quantify the contribution of the predictable components to risk premia, we first
estimate the intertemporal elasticity of substitution (IES), and we then extend
the long-run risk valuation framework of Bansal and Yaron (2004) to account
for the persistence heterogeneity in consumption growth.

20 We report results only for the case in which the regressor is the price-dividend ratio. Conclusions do not change
when we use the price-consumption series as the regressor.
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3.2 Estimating the IES under persistence heterogeneity
The standard approach to estimate the IES (see Hansen and Singleton 1983) is
to run the following regression:21

rf,t =αf +
1

ψ
gt +σf ut . (15)

Empirical tests of (15) typically find an estimate ofψ lower than one (see, e.g.,
Hall 1988; Campbell and Mankiw 1990, among many others). This evidence
contradicts a basic paradigm in the long-run risk literature that requires an
IES greater than one for the small-in-volatility but persistent component to
contribute to the equity premium. We resolve this puzzle by employing our
decomposition of a time series into layers with different levels of persistence.
Coherently with our approach, instead of running the regression in (15), we
filter both sides of (15) using the transformation matrix T (J ) introduced in
Section 2.1 to obtain the following set of J testable restrictions:22

r
(j )
f,t =

1

ψ
g

(j )
t +σf,j u

(j )
t . (16)

In words, this set of relations is constrained by the condition that the coefficient
linking the information content of the components of the risk-free rate to those of
consumption growth must be the same at all levels of persistence.23 Compared
with (15), the system of regressions (16) mandates to properly account for
the heterogeneity in consumption growth generated by the mixture of highly
volatile and slowly evolving components. This is exactly what we do when we
apply the persistence-based decomposition before running the regressions.

Table 7 displays the results. The first row shows the estimate obtained using
the full sample 1947Q2–2011Q4. Remarkably, when we decompose the risk-
free rate and consumption growth across the different levels of persistence, the
estimate of the IES is significant at standard levels and equal to 5.4. Next, we
split the sample into two subsamples of equal sizes (128 data points), 1947Q2–
1979Q1 and 1979Q1–2010Q4. The second and third rows show that the above
finding is robust in these two subsamples. In particular, these subsample
estimates are strongly significant, all above one and close to the value obtained
in the full sample.

A potential explanation of these results is that (particularly in postwar
quarterly data) the real interest rate is highly volatile relative to predictable
variation in consumption growth (see, e.g., Beeler and Campbell (2012)

21 Alternatively, one can reverse the regression and estimate gt+1 =β0 +ψrf,t+1 +ηt+1. However, if ψ is large as it
will turn out to be the case in our empirical exercise, then it is better to estimate the equation reported in the text.

22 In the online Technical Appendix, we derive (15) as an equilibrium condition in a long-run risk framework with
heterogeneous persistence.

23 To estimate the system of equations in (16), we adopt the technique suggested in Fadili and Bullmore (2002),
who show that in this case the GLS is theoretically close to the best linear unbiased (BLU) estimator.
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Table 7
Estimates of the intertemporal elasticity of substitution (IES)

r
(j )
f,t+1 =αf + 1

ψ
g

(j )
t+1

Asset Sample ψ̂

rf,t+1 1948Q1–2011Q4 5.54
(3.20)

rf,t+1 1948Q1–1979Q4 6.15
(1.90)

rf,t+1 1980Q1–2011Q4 4.02
(3.30)

This table displays the EIS estimates using the real risk-free rate. The first row
reports the estimate obtained from the full sample (256 data points, and hence
the maximum number of components is J =8). In the second and third rows, the
sample is split into two subsamples of equal sizes, and the estimate is based on
128 data points, hence the maximum number of components is J =7. All estimates
are computed using the decimated persistence-based decomposition as suggested
in Fadili and Bullmore (2002).

for a discussion). It would be difficult to estimate properly the IES unless
one disentangles the highly volatile and noisy components from the more
informative but less volatile ones. We obtain a robust estimate larger than
one exactly by disentangling these components. Our estimate, moreover,
yields support to a key hypothesis of the long-run risk valuation approach.
Its magnitude is in line with the recent findings of Avramov and Cederburg
(2012) who, in a similar postwar sample, estimate an IES of 4.5. Our empirical
findings are also in agreement with previous studies, for example, Attanasio
and Weber (1993), Beaudry and van Wincoop (1996), and Vissing-Jorgensen
(2002), who find values for ψ higher than one. Similarly to those papers, we
present evidence of the fact that the relation between the real interest rate
and consumption growth can be obscured by aggregation problems, and we
show that using disaggregated consumption data is key to finding a value
for the IES greater than one. Whereas the literature cited above focuses on
consumption data disaggregated at cohort level, state level or household level,
we suggest instead persistence heterogeneity as a key dimension along which
to disaggregate consumption.

3.3 Persistence heterogeneity and the term structure of equity premia
The layers of consumption growth with heterogeneous persistence generate a
term structure of equity risk premia. To see this, we consider a Bansal and Yaron
(2004) economy in which a representative agent with recursive preferences à
la Epstein-Zin (see Kreps and Porteus 1978; Epstein and Zin 1989, 1991) faces
a consumption stream gt whose decimated components g(j )

t follow multiscale
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autoregressive processes, that is,24

g
(j )
t+2j

=ρjg
(j )
t +ε(j )

t+2j
, (17)

with the shocks possibly correlated across levels of persistence (for fixed time t),
but not across time (for fixed persistence level j ). The lag of 2j units of time
between the regressand and the regressor means that cyclical fluctuations at
time-scale j forecast the next cycle of length 2j periods.25 Consistently, we
allow the leverage effect to be different across levels of persistence, that
is, the decimated components gd (j )

t of the log dividend growth series gdt
satisfy

gd
(j )
t+2j

=φjg
(j )
t +η(j )

t+2j
(18)

with the shocks η(j )
t+2j

∼N
(

0,σ 2
j

)
uncorrelated both across time (for fixed

persistence level j ) and across levels of persistence (for fixed time t), and
independent from the shocks ε(j )

t+2j
to the consumption growth components.

To determine the term structure of risk premia, we first recall that the Euler
equation for the representative agent is

Et

[
e
θ logβ− θ

ψ
gt+1+(θ−1)ra,t+1+ri,t+1

]
=1 , (19)

where ra,t+1 is the log return on the claim that distributes a dividend equal to
aggregate consumption, ri,t+1 is the log return on any asset i, the parameters
β, ψ, γ measure the subjective discount factor, the intertemporal elasticity of
substitution and risk aversion, and θ≡ (1−γ )/(1−1/ψ).

To solve the model, we log-linearize the return on the consump-
tion claim, ra,t+1, and the return on the market portfolio, rm,t+1, à la
Campbell and Shiller (1988) to express them in terms of the log price-
consumption and log price-dividend ratio za,t , zm,t as follows:

ra,t+1 =κ0 +κ1za,t+1 −za,t +gt+1 (20)

rm,t+1 =κ0,m+κ1,m1zm,t+1 −zm,t +gdt+1 ,

24 We focus our attention on the case in which second moments are constant. By assuming constant volatilities of log
consumption growth and log dividend growth, we are able to better concentrate on our primary research question.
That is, whether fluctuations in the conditional mean of consumption and dividend growth are indeed priced.
Tamoni (2011) uses the persistence-based decomposition to study the implications of persistence heterogeneity
in consumption volatility for the risk premium dynamics.

25 In fact the g(j )
t ’s are autoregressive processes of order one up to the scale 2j necessarily to avoid spurious

correlation, a fact highlighted by rewriting (17) as

g
(j )

(k+1)·2j =ρj g
(j )

k·2j +ε(j )

(k+1)·2j ..
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and we conjecture a linear relation between the persistent components z(j )
a,t , z

(j )
m,t

of the financial ratios and the consumption components g(j )
t :26

z
(j )
a,t =A0,j +Ajg

(j )
t (21)

z
(j )
m,t =A

m
0,j +Amj g

(j )
t .

To determine the coefficients Aj ,Amj in terms of the parameters of the model,
one first uses (20), (21) and the law of motions (17) and (18) to express the
returns ra,t+1, rm,t+1 in terms of the consumption and dividend components
g

(j )
t ,gd

(j )
t and the innovations ε(j )

t+2j
andη(j )

t+2j
. Plugging the expressions obtained

in this way into the Euler equation and denoting by A, respectively Am the
column vectors with entries Aj , Amj , j =1,...,J, the method of undetermined
coefficients yields two systems of equations in the unknowns A, respectively
Am, whose solutions are:

A=

(
1− 1

ψ

)
(IJ −κ1M)−1M1 (22)

Am=(IJ −κ1,mM)−1M

(
φ− 1

ψ
1

)
, (23)

where IJ is the (J×J ) identity matrix, M is a J -dimensional diagonal matrix
with the opposite of the persistence parameters ρj on the diagonal, and φ is a
column vector whose entries are the leverage parameters φj .27

Aggregating over persistence levels the relation imposed by (21) between
financial ratio components and consumption components and using (17) and
(18) yields the following linear decomposition of the aggregate financial ratios
in terms of cash flows components:

za,t−πa =
J∑
j=1

z
(j )
a,t =

J∑
j=1

cjEt

[
g

(j )
t+2j

]
(24)

zm,t−πm=
J∑
j=1

z
(j )
m,t =

J∑
j=1

cmj Et

[
gd

(j )
t+2j

]
,

where cj ≡Aj/ρj , cmj ≡Amj /φj and the constants πa,πm capture the
unconditional mean of the financial ratios. Equation (24) decomposes the
financial ratios in a weighted sum of cash flow expectations over forecasting

26 The fact that z(j )
a,t , z

(j )
m,t are the components of the demeaned price-consumption and price-dividend ratios implies

that
∑
A0,j =0 and

∑
Am0,j =0. Moreover as in Bansal, Yaron, and Kiku (2012), in our model the log-linearization

parameters κ1 and κ1,m, are determined endogenously because the long-run means πa , πm depend on κ1, κ1,m
which in turns are functions of the price-consumption and price-dividend ratio mean.

27 All the details behind these computations are available in the online Technical Appendix.
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horizons determined by the degrees of persistence present in the consumption
and dividends series. This decomposition hints at an alternative approach
to studying the contribution of cash flows to the variation over time of
financial ratios. In particular, whereas most of the literature has focused on
the importance of the timing of dividend payments to determine the value
of financial ratios (see, for instance, Van Binsbergen, Brandt, and Koijen
(2012); Van Binsbergen et al. (2012), who look at dividend strips of different
maturities), our decomposition suggests instead studying the contribution of
the components with different levels of persistence disentangled from the full
dividend stream.

In our model with persistence heterogeneity, the equity premia for the
consumption claim asset, ra,t+1, and for the market portfolio, rm,t+1, take the
form:28

Et [ra,t+1 −rf,t ]+0.5σ 2
ra,t

=γ 1ᵀQ1+κ1λ
ᵀ
ε QA , (25)

Et [rm,t+1 −rf,t ]+0.5σ 2
rm,t

=κ1,mλ
ᵀ
ε QAm , (26)

where λε≡κ1(1−θ )A and Q is the variance-covariance matrix of the
innovations ε(j )

t+2j
to the components of consumption growth. The expression for

the equity premium shows that, whereas the standard long-run risk framework
prices only a single, persistent shock to aggregate consumption growth,
the presence of persistence heterogeneity permits an analysis of the pricing
impact of the shocks driving the components of consumption growth, each
characterized by its own level of persistence. The risk compensations for these
innovations are collected in the vectorλε, whereas the market return’s exposures
to these shocks are represented by the vector QAm. Importantly, the exposure
of the market return is determined simultaneously by the size of the shocks
as measured by their instantaneous volatility, captured by Q, and by their
persistence. To obtain the entire term structure of risk-return trade-offs it is
therefore key to decompose the aggregate shocks that impinge an economy
along the two competing dimensions of volatility and persistence.29

To quantify the effect and the contribution of the predictable components in
consumption and dividends, we compute the equity premium for two different
levels of the IES, ψ =2.5 and ψ =5. The first is the value estimated in Bansal,
Yaron, and Kiku (2012). The second value is coherent with the estimate
obtained in the previous section. For the risk aversion parameter we consider
the alternative values of γ =5, close to the postwar estimate in Ghysels, Santa-
Clara, and Valkanov (2004), and γ =7.5, that has been used in the calibration
of Bansal and Yaron (2004).30

28 See again the online Technical Appendix.

29 This is similar in spirit to Hansen and Scheinkman (2009), Borovicka et al. (2011), and Lettau and Wachter
(2011), who look at the entire term structure of risk prices.

30 We set κ1,m and κ1 to 0.988, a value consistent with the magnitude of the mean of the financial ratios in our
sample and with magnitudes used in Campbell and Shiller (1988).
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To estimate the entriesAj ,Amj of the vectorsA andAm, we first observe that
by solving (21) for the consumption growth components and plugging into the
right-hand side of the consumption dynamics (17) we obtain

g
(j )
t+2j

=−ρjA0,j

Aj
+
ρj

Aj
z

(j )
a,t +ε

(j )
t+2j

g
(j )
t+2j

=−ρjA
m
0,j

Amj
+
ρj

Amj
z

(j )
m,t +ε

(j )
t+2j

,

which is exactly the set of predictive regressions discussed in Section 3.1.

Denoting therefore by β̂g1,j =
(̂
ρj

Aj

)
and ̂̃βg1,j =

(̂
ρj

Am
j

)
the slopes estimates of

(13), and given an estimate of the persistence parameter ρ̂j , we estimate the
sensitivities Aj ,Amj via

Âj = ρ̂j /

(̂
ρj

Aj

)
, Âmj = ρ̂j /

(̂
ρj

Amj

)
.

Estimates ρ̂j of the autoregressive coefficients, together with theR2, are shown
in Table 8. The off-diagonal terms of the estimated variance-covariance matrix
Q̂ of the innovations ε(j )

t+2j
are small and insignificant, that is, Q̂ is approximately

a diagonal.31 Therefore, we find no evidence of interaction across components
with different degrees of persistence even though they are allowed to be
correlated. This allows us to approximate the equity premium in (26) as follows

Et [rm,t+1 −rf,t ]+0.5σ 2
rm,t

≈κ1,mκ1(1−θ )
J∑
j=1

Âj Q̂jj Â
m
j .

With these parameter values at hand, we compute the equity premium
disaggregated across different levels of persistence. Results are reported in
Tables 9 and 10. We first observe that the equity premium is close to zero
at level of persistence j =1. This is consistent with the fact that, as Table 8
shows, the first component is not persistent and as such bears no risk so
that it must command no premium. The predictive regressions discussed in
Section 3.1 (see, in particular, Tables 4 and 6) show that the only components
of consumption and dividends that are predictable by financial ratios are
those at level of persistence j =2,3,6, that is, those with an half-life in the
interval, measured in years, [0.5, 1), [1, 2), and [8, 16), respectively. In other
words, the risk exposures and the prices of risk of the other components are
statistically insignificant. For this reason, we concentrate our discussion only
on the premium for the predictable components. We start by the low-frequency
persistent component j =6 because its contribution to the equity premium is

31 The Pearson’s correlation test indicates that almost all of the consumption growth components residuals are
pairwise uncorrelated. The correlation is significant at standard levels only between the sixth and seventh
components, yielding a Pearson’s p-values of about 0.07. Similar results are obtained using the Spearman
rank-order correlation coefficients test.
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Table 8
Multiscale autoregressive process estimates

Variables ρj HL (years) R̄2

g
(1)
t+2 −0.00 – [0.00]

(−0.08)

g
(2)
t+22 −0.14 0.4 [0.02]

(−2.37)

g
(3)
t+23 −0.13 0.7 [0.02]

(−2.13)

g
(4)
t+24 −0.11 – [0.01]

(−1.75)

g
(5)
t+25 −0.16 3.1 [0.03]

(−2.66)

g
(6)
t+26 −0.21 7.1 [0.05]

(−3.19)

g
(7)
t+27 0.14 10.8 [0.13]

(4.40)

This table reports the estimation results of the multiscale autoregressive system. For
each level of persistence j ∈{1,...,7}, we run a regression of the consumption growth

component g(j )

t+2j
on its own lagged component g(j )

t . For each regression, the table

reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in
parentheses, and adjusted R2 statistics in square brackets. Bold coefficients denote
statistical significance at the 5% level. Half-lives (in annual units) are obtained by HL=
4/2j ×log(2)/log(

∣∣ρj ∣∣). The sample is quarterly and spans the period 1947Q2–2010Q4.

the largest. This component commands a premium that ranges from 1% for
the case in which ψ =5 and γ =5 to a maximum of almost 2% for the case in
which ψ =2.5 and γ =7.5. Considering now the high-frequency components
with level of persistence j =2,3, we note that they command a smaller, but by
no means trivial, premium. In particular, the premium to each of this component
is about 0.5% for the case in which ψ =5 and γ =5 and raises to 1% for the
case in which ψ =2.5 and γ =7.5. In sum, the contributions of the different
components deliver an equity premium in the range of 2%–4% per annum, for
a moderate amount of the risk aversion and an IES greater than one.32

Recalling the identification of the predictable layers of consumption in
Section 2.2, our calibration exercise shows that two components, one on the
low-frequency side and correlated to long-run productivity growth and one on
the high-frequency side and correlated with the fourth-quarter effect, deliver
a sizable contribution to the equity premium for a moderate amount of risk

32 To check the accuracy of the equity premium term structure obtained via predictive regressions, we compute the
vectors A and Am directly from expressions (22) and (23). In particular, we insert in (22) and (23) the estimates
of ρj , see Table 2, φj =(φj /A

m
j

)/(ρj /A
m
j

)·ρj and the value of the IES estimated in Section 3.2 By doing so,

we obtain alternative estimates for A and Am that are slightly larger, but in reasonable agreement with those
obtained via OLS regressions. The term structure of risk premia reported in Tables 9 and 10 makes use of the
most conservative OLS estimates.
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Table 9
The term structure of risk premia, IES =5

Panel A: Risk aversion and IES: γ =5, ψ =5

Scale Half-life Qjj Risk exposure Risk price Risk premium
j = (years) (1×10−5) (1×10−6) (%)

1 0.06 1.06 15.77 1.83 0.00
2 0.4 0.54 117.21 57.57 0.67
3 0.7 0.45 125.45 42.20 0.53
4 1.2 0.32 145.27 302.13 4.38
5 3.1 0.17 195.48 101.51 1.98
6 7.1 0.09 60.21 159.81 0.96
7 10.8 0.02 36.07 456.14 1.64

Panel B: Risk aversion and IES: γ =7.5, ψ =5

Scale Half-life Qjj Risk exposure Risk price Risk premium
j = (years) (1×10−5) (1×10−6) (%)

1 0.06 1.06 15.77 2.78 0.00
2 0.4 0.54 117.21 87.55 1.03
3 0.7 0.45 125.45 64.18 0.81
4 1.2 0.32 145.27 459.49 6.67
5 3.1 0.17 195.48 154.38 3.02
6 7.1 0.09 60.21 243.04 1.46
7 10.8 0.02 36.07 693.71 2.50

This table reports equity premium (in %) Et [rm,t+1 −rf,t ] decomposed by level of persistence. We set ψ =5,
γ =5 (Panel A), and γ =7.5 (Panel B). Risk exposure and risk price are annualized. The annual percentage risk
premium is given by the risk exposure times the risk price (multiplied by 100). Highlighted rows denote the
predictable components of consumption growth.

Table 10
The term structure of risk premia, IES =2.5

Panel A: Risk aversion and IES: γ =5, ψ =2.5

Scale Half-life Qjj Risk exposure Risk price Risk premium
j = (years) (1×10−5) (1×10−6) (%)

1 0.06 1.06 15.77 2.34 0.00
2 0.4 0.54 117.21 73.56 0.86
3 0.7 0.45 125.45 53.92 0.68
4 1.2 0.32 145.27 386.06 5.60
5 3.1 0.17 195.48 129.71 2.53
6 7.1 0.09 60.21 204.20 1.23
7 10.8 0.02 36.07 582.85 2.10

Panel B: Risk aversion and IES: γ =7.5, ψ =2.5

Scale Half-life Qjj Risk exposure Risk price Risk premium
j = (years) (1×10−5) (1×10−6) (%)

1 0.06 1.06 15.77 2.78 0.01
2 0.4 0.54 117.21 87.55 1.33
3 0.7 0.45 125.45 64.18 1.04
4 1.2 0.32 145.27 459.49 8.65
5 3.1 0.17 195.48 154.38 3.91
6 7.1 0.09 60.21 243.04 1.90
7 10.8 0.02 36.07 693.71 3.24

This table reports equity premium (in %) Et [rm,t+1 −rf,t ] decomposed by level of persistence. We set ψ =2.5,
γ =5 (Panel A), and γ =7.5 (Panel B). Risk exposure and risk price are annualized. The annual percentage risk
premium is given by the risk exposure times the risk price (multiplied by 100). Highlighted rows denote the
predictable components of consumption growth.
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aversion. This fact further highlights the importance of our heterogeneous
persistence approach to understanding the behavior of the equity premium
across different time horizons.

4. Robustness

In this section we conduct some checks to analyze the robustness of our
predictive regressions and of our estimate of the IES to the sampling frequency
and to the choice of financial ratio. First, to understand whether measurement
errors in quarterly consumption data change our conclusions, we use annual
rather than quarterly data on consumption and asset prices. In fact, annual data
are less susceptible to measurement errors (see, e.g., Bansal, Kiku, and Yaron
2012). We also extend our sample to span the time period from 1930 to 2011.
As noted by Bansal, Kiku, and Yaron (2012), this sample covers a wide range of
macroeconomic events and various episodes of high turbulence in asset markets
that potentially contain additional important information regarding variation in
expected consumption growth. Finally, we test the robustness of our results to
the case in which the price-earnings ratio is used instead of the price-dividend
ratio.

We start by rerunning the regression (13) in Section 3.1 when both
consumption growth and the price-dividend are sampled at an annual frequency
over the period 1948–2011. The results, reported in Table 11, Panel A, show
that with annual data the regressions yield significant slopes only for the levels
of persistence j =1,4. This is consistent with the results in Section 3.1 using
quarterly data. To see this, observe that the component at level of persistence
j =1 extracted using annual data has a half-life falling between 1 and 2 years,
that is, four and eight quarters, which with quarterly data corresponds to the
component at level j =3. Likewise, the component at level of persistence j =4
extracted using annual data captures cycles of length in the interval [8,16)
years, that is, [32,64) quarters, which with quarterly data corresponds to the
component at level j =6. This allows us to conclude that, aside from a change
in time unit, going from quarterly to annual data leaves our results unaltered.33

Also, we note that both the coefficient and the R2 obtained using annual data
are largely in agreement with those using quarterly data, and even more so for
components with a high level of persistence. For example, by annualizing the
coefficient on the sixth component obtained in the quarterly sample, that is,
0.34×4=1.36, one obtains a result close to the one in the annual data. The
rationale behind these results rests on the fact that the component at level
of persistence j in the annual sample corresponds to the component with
level of persistence j +2 in the quarterly sample and, for any given j , formal

33 Clearly, the second component that was found to be significant using quarterly data cannot be captured by the
annual sample because it reflects cyclicality between half-year and a year, which is well below the maximum
observation frequency achievable using annual data.
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Table 11
Predictability of consumption components by the price-dividend ratio: Annual data

Panel A: 1948–2011

Persistence level j

Variable 1 2 3 4 5

3.74 −0.34 0.50 1.25 0.14

pd
(j )
t (4.72) (−0.25) (0.33) (2.01) (0.40)

[0.23] [0.00] [0.01] [0.14] [0.04]

Panel B: 1930–2011

Persistence level j

Variable 1 2 3 4 5

4.98 −0.43 0.21 1.68 0.03

pd
(j )
t (3.53) (−0.20) (0.10) (2.09) (0.06)

[0.15] [0.00] [0.00] [0.15] [0.00]

This table reports the results of predictive regressions of the components of consumption growth on the
components of the (log) price-dividend ratio. For each regression, the table reports OLS estimates of the
regressors, Hansen and Hodrick corrected t-statistics in parentheses, and adjustedR2 statistics in square brackets.
Significant coefficients at the 5% level are highlighted in bold. The estimated slope coefficients are multiplied
by 100. The sample is annual and spans the period 1948-2011 (Panel A) and the period 1930–2011 (Panel B).

correlation tests (not reported) show that the correlation is high and approaches
one as the level of persistence increases. In conclusion, data with different
frequency of observation (e.g., quarterly vs. annual) do not drive the inference,
and any measurement error, if present, vanishes as the level of persistence
increases.

We also run the regression (13) at the annual frequency but using the longest
available data span, that is, 1930–2011 and report the results in Table 11, Panel
B. The results are consistent with those obtained for the quarterly series: The
components with level of persistence j =1,4 are the only statistically significant
ones.

We then turn our attention to the robustness of our results to the choice
of the financial ratio. Following Bansal, Khatchatrian, and Yaron (2005), we
use the price-earnings as an alternative to the price-dividend ratio and then
run predictive regression of the components of consumption growth on the
respective components of the price-earnings ratio on the annual sample 1948–
2011. We report the results in Table 12. Our results show that using the price-
earnings ratio instead of the price-dividend ratio does not impact our findings
obtained using both quarterly and annual data (see Tables 4 and 11). The sign
of the components of consumption growth with level of persistence j =1,4 is
positive, as predicted by our economic model, and estimates have significant
robust t-statistics.

In summary, the robustness checks presented above show that the two
components with an approximate half-life of one and eight years of both
the price-dividend and the price-earnings ratio are useful in predicting the
respective components of future consumption growth. Moreover, the results are
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Table 12
Predictability of consumption components by the price-earnings ratio: Annual data

Persistence level j

Variable 1 2 3 4 5

3.95 0.63 −0.03 0.72 0.09

pe
(j )
t (4.14) (0.43) (−0.02) (1.91) (0.18)

[0.21] [0.01] [0.00] [0.10] [0.01]

This table reports the results of predictive regressions of the components of consumption growth on the
components of (log) price-earnings ratio. Trailing ten-year earnings are used. For each regression, the table
reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in parentheses, and adjusted
R2 statistics in square brackets. Significant coefficients at the 5% level are highlighted in bold. The estimated
slope coefficients are multiplied by 100. The sample is annual and spans the period 1948–2011.

robust to the inclusion of the prewar period and to the frequency of observations
(quarterly versus annual data).

Anatural question that arises at this point is that of whether we can understand
the long-run fluctuations in the data rather than simply the fluctuations
represented by a component with a specific level of persistence j . To do so, we
use Equations (1) and (3) to show that when we sum the components with
level of persistence greater than j =6 to the constant term π

(J )
t we obtain∑J

j=6g
(j )
t +π (J )

t =gt−26−1,t , where gt−26−1,t represents the log of consumption
growth over 32 quarters. In other words, the sum of all components with level
of persistence greater than six produces a smoothed consumption growth series
that corresponds to frequencies of 32 quarters and above and is in strict analogy
with the medium-frequency component of Comin and Gertler (2006). We plot
in Figure 7 this truncated sum of components for the consumption growth and
TFP series. The striking comovement patterns between long-run consumption
growth and TFP is confirmed by a correlation of about 47%. From a closer
inspection of Figure 7, moreover, another interesting point emerges: Even
though our truncated sum of components allows for all possible fluctuations
whose cycle length exceeds eight years, the cycles are in fact on the order of
a decade, and therefore most of the variations in the consumption and total
factor productivity growth rates over 32 quarters are indeed captured by the
sixth component of such a series.

In essence, the vast majority of the action in terms of long-run fluctuations
in consumption and TFP growth rates comes from the sixth component, that is,
cycles with a half-life between eight and sixteen years, whereas components
with higher half-life seem to be of lesser importance. To further support this
statement, Figure 8 displays in the top panel the component of consumption
growth with level of persistence j =6, g(6)

t , along with the long-term growth
rate of consumption growth gt−26−1,t and in the bottom panel the analogous for
the total factor productivity. The sixth component explains 85% and 54% of
the long-term consumption and TFP growth rates, respectively. This highlights
the predominance of the specific component j =6 in explaining the long-term
fluctuations in the data.
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Figure 7
Consumption and total factor productivity at medium-low frequencies
This figure displays the components of consumption growth and total factor productivity with frequency greater
than 32 quarters. These components are obtained by summing the components with level of persistence j≥6

of consumption growth,
∑J
j=6g

(j )
t =gt−32,t and of total factor productivity,

∑J
j=6
TFP

(j )
t =
TFPt−32,t .

These components are related to the Comin and Gertler (2006) medium-frequency components, that is, those
components related to a frequency range of 32 to 200 quarters.

Table 13
Estimates of the intertemporal elasticity of
substitution (IES): Annual data

rf,j,t+1 =αf + 1
ψ
gt+1,j

Asset Sample ψ̂

rf,t+1 1930–2011 2.09
(3.22)

This table displays the EIS estimates using the risk-
free rate. The estimate is obtained from the full sample
and is computed using the decimated decomposition
as suggested in Fadili and Bullmore (2002).

We conclude this robustness section by using the set of equations (16) to
estimate the intertemporal elasticity of substitution employing the long annual
sample from 1930 to 2011. The point estimate for this long sample, reported
in Table 13, is strictly greater than one and statistically significant. This allows
us to highlight once again the importance of considering cyclical fluctuations
in the time series of interest.
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Figure 8
Comparing medium to low frequencies
This figure displays the component with level of persistence j =6 and the components with a frequency greater
than 32 quarters filtered out of consumption growth (top panel) and total factor productivity (bottom panel). We
use 26/4=16 years of data at the beginning of the sample to initialize the filtering procedure.

5. Conclusion

This paper shows that a long-run risk model, with the effects of persistence
heterogeneity properly taken into account, offers a credible explanation to many
empirical results which seemed to contradict the long-run valuation picture.
Our results clearly indicate that any systematic empirical test of a long-run risk
model must classify shocks across two competing dimensions: their size as
measured by volatility and their persistence as measured by their half-life. In
fact, a classification of shocks based on the persistence-based decomposition
provides a significant improvement in the ability to detect pricing implications
within a long-run risk framework.

Our proposal, the use of a persistence-based decomposition, offers interesting
developments. Previously, pros and cons of filtering procedures have been
discussed in the macroeconomic literature (see, for instance, Canova 1998;
Christiano and Fitzgerald 2003) and it has been observed that sometimes
results are not robust to different choices of the filtering criterion. In fact, the
decomposition procedure introduces an additional source of model risk, and
hence an uncertainty-averse agent should take it into account while forming
expectations. In our analysis we assumed that the representative agent is

36

 at U
niversita C

om
m

erciale L
uigi B

occoni on July 10, 2013
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


[15:54 4/7/2013 RFS-hht038.tex] Page: 37 1–40

Long-Run Risk and the Persistence of Consumption Shocks

uncertainty-indifferent leaving for future research the analysis of the effects
of ambiguity aversion on valuation.

Our contribution raises a number of questions both on the methodological
and on the empirical side. On the methodological side, a promising direction
of research is to explore the relation between our decomposition based on
multiresolution and the spectral approach discussed in Hansen, Heaton, and Li
(2008) and formalized in Hansen and Scheinkman (2009). On the empirical
side, an interesting next step is to apply our persistence-based decomposition
to the analysis of bond prices and state dependent volatility. We leave these
topics for future research.

Appendix

A. Data

This appendix describes the data used in the paper. To evaluate the implications of the long-run
risks model with persistence heterogeneity we concentrate on five variables: the changes in log
consumption and dividends, the log price-dividend ratio, the log price-consumption ratio, and
the real interest rate. Following Bansal and Yaron (2004) and Beeler and Campbell (2012),34 we
use data on U.S. nondurables and services consumption from the Bureau of Economic Analysis.
We make the standard “end-of-period” timing assumption that consumption during period t takes
place at the end of the period. Growth rates are constructed by taking the first difference of the
corresponding log series. The price-dividend ratio and dividend growth rates are obtained from the
CRSP files. All nominal quantities are converted to real using the personal consumption deflator.
To proxy for the price-consumption, we follow Duffee (2005) and use the ratio of the market
capitalization of publicly traded stocks to total consumption on nondurables and services. Stock
market wealth is measured by the month-end market capitalization of the CRSP value-weighted
index, expressed in real per capita terms for comparability to the consumption data. Following
Bansal, Yaron, and Kiku (2012) the ex ante real risk-free rate is constructed as a fitted value from
a projection of the ex post real rate on the current nominal yield and inflation over the previous
year. To run the predictive regression, we use monthly observations on the three-month nominal
yield from the CRSP Fama Risk-Free Rate tapes and CPI series. We consider a postwar quarterly
U.S. series over the period 1947:Q2–2011:Q4, and for robustness we use a long-run annual series
over the period 1930–2010.35 To initialize the filtering procedure for the quarterly and annual
sample we use CRSP data from 1927Q1–1946Q4 and Shiller’s annual dataset36 from 1900–
1929, respectively.37 Finally, the time series for annual productivity is from the Bureau of Labor
Statistics; the sample spans 1948–2011. We use a multifactor productivity index that takes into
account capital accumulation. In particular, the index adopted measures the value-added output
per combined unit of labor and capital input in private business and private nonfarm business,
available at ftp://ftp.bls.gov/pub/special.requests/opt/mp/prod3.mfptablehis.zip (as Kaltenbrunner
and Lochstoer 2010).

34 We thank Jason Beeler for kindly providing us with the data.

35 We do not consider monthly consumption data because they are plagued with measurement errors (Wilcox 1992).

36 The data have been obtained from Robert Shiller’s home page (www.econ.yale.edu/ shiller/).

37 See Appendix B for further details on the initialization procedure.
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B. The initialization of the filtering procedure

In this section we tackle the problem of initializing the filtering procedure in the case where the
time-series xt has only a finite number of observations, x1,...,xT . In fact, formally the persistence-
based decomposition described in Section 2.1 is defined for infinite-length signals and finite-length
processes must be extended before their components can be extracted. Common extension
methods include periodic or mirror-image replication, zero padding, and linear extrapolation
(see Mallat 1989 for a detailed description of the various methods). An important drawback of all
these methods is that they influence the first 2j −1 elements of each of the components j and they
can therefore generate spurious correlations if such components are used as regressand/regressors
in the estimation procedure. In this paper, therefore, we adopt a different approach to deal with
the initialization. Specifically, for a given maximum level J for the decomposition, we initialize
the components using the first 2J observations which are then discarded. This of course implies a
reduction of our effective sample.

In particular, for the quarterly sample, we use CRSP data from 1927Q1 to 1946Q4 to initialize
the components of the price-dividend ratio. These are twenty years of data that suffice to initialize
the components with level of persistence j =1,...,6. In order to extract the seventh component,
which requires thirty-two years of data, we either zero-pad the time series or we extend it circularly.
The main text presents the results obtained with zero padding. Conclusions do not change when
we use circular extension. For the annual sample we rely on the yearly dataset of Shiller beginning
in 1900. Our regressions start in 1931 and therefore use thirty-one years of data to initialize all of
the components.

To estimate the system of equations in (16) we adopt the technique suggested in Fadili and
Bullmore (2002). This requires that we apply the transformation matrix T (J ) to a time series
with T =2J elements to obtain J components each with T/2j elements. We use the sample
period 1948Q1–2011Q4 which has length equal to T =256. It is possible, however, to handle
sample periods with length less than 2J by using either zero padding or reflecting boundaries to
reach the critical dimension. Fadili and Bullmore (2002) study in detail the effect of artifactual
intercoefficient correlations introduced by boundary correction and show that the generalized least
squares estimator (GLS) is unbiased over a wide range of data conditions and that its efficiency
closely approximates theoretically derived limits.

References

Attanasio, O. P., and G. Weber. 1993. Consumption growth, the interest rate and aggregation. Review of Economic
Studies 60:631–49.

Avramov, D., and S. Cederburg. 2012. Implications of long-run risk for asset allocation decisions. Working Paper.

Bandi, F. M., and B. Perron. 2008. Long-run risk-return trade-offs. Journal of Econometrics 143:349–74.

Bandi, F. M., B. Perron, A. Tamoni, and C. Tebaldi. 2013. The scale of predictability. Working Paper.

Bansal, R., R. F. Dittmar, and C. T. Lundblad. 2005. Consumption, dividends, and the cross section of equity
returns. Journal of Finance 60:1639–72.

Bansal, R., R. Dittmar, and D. Kiku. 2007. Cointegration and consumption risks in asset returns. Review of
Financial Studies 22:1343–75.

Bansal, R., V. Khatchatrian, and A. Yaron. 2005. Interpretable asset markets? European Economic Review
49:531–60.

Bansal, R., D. Kiku, and A. Yaron. 2012. An empirical evaluation of the long-run risks model for asset prices.
Critical Finance Review 1:183–221.

Bansal, R., and A. Yaron. 2004. Risks for the long run: A potential resolution of asset pricing puzzles. Journal
of Finance 59:1481–509.

Bansal, R.,A. Yaron, and D. Kiku. 2012. Risks for the long run: Estimation with time aggregation. Working Paper.

38

 at U
niversita C

om
m

erciale L
uigi B

occoni on July 10, 2013
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


[15:54 4/7/2013 RFS-hht038.tex] Page: 39 1–40

Long-Run Risk and the Persistence of Consumption Shocks

Beaudry, P., and E. van Wincoop. 1996. The intertemporal elasticity of substitution: An exploration using a US
panel of state data. Economica 63:495–512.

Beeler, J., and J.Y. Campbell. 2012. The long-run risks model and aggregate asset prices:An empirical assessment.
Critical Finance Review 1:141–82.

Borovicka, J., L. P. Hansen, M. Hendricks, and J.A. Scheinkman. 2011. Risk-price dynamics. Journal of Financial
Econometrics 9:3–65.

Burns, A. F., and W. C. Mitchell. 1946. Measuring business cycles. New York, National Bureau of Economic
Research.

Calvet, L. E., and A. J. Fisher. 2007. Multifrequency news and stock returns. Journal of Financial Economics
86:178–212.

Campbell, J. Y. 2003. Consumption-based asset pricing. In Handbook of the economics of finance, vol. 1, chap. 13,
pp. 803–887. Eds. G. Constantinides, M. Harris, and R. M. Stulz. Amsterdam: Elsevier.

Campbell, J. Y., and N. G. Mankiw. 1990. Consumption, income, and interest rates: Reinterpreting the time series
evidence. NBER Working Papers 2924.

Campbell, J. Y., and R. J. Shiller. 1988. The dividend-price ratio and expectations of future dividends and discount
factors. Review of Financial Studies 1:195–228.

——. 2001. Valuation ratios and the long-run stock market outlook: An update. Cowles Foundation Discussion
Papers 1295, Yale University.

Campbell, J. Y., and M. Yogo. 2006. Efficient tests of stock return predictability. Journal of Financial Economics
81:27–60.

Canova, F. 1998. Detrending and business cycle facts. Journal of Monetary Economics 41:475–512.

Christiano, L. J., and T. J. Fitzgerald. 2003. The band pass filter. International Economic Review 44:435–65.

Cochrane, J. H. 1992. Explaining the variance of price-dividend ratios. Review of Financial Studies 5:243–80.

Cochrane, J. H., and M. Piazzesi. 2005. Bond risk premia. American Economic Review 95:138–60.

Comin, D., and M. Gertler. 2006. Medium-term business cycles. American Economic Review 96:523–51.

Constantinides, G. M., andA. Ghosh. 2011.Asset pricing tests with long-run risks in consumption growth. Review
of Asset Pricing Studies 1:96–136.

Croce, M. M. 2010. Long-run productivity risk: A new hope for production-based asset pricing? Working Paper.

Duffee, G. R. 2005. Time variation in the covariance between stock returns and consumption growth. Journal of
Finance 60:1673–1712.

Epstein, L. G., and S. E. Zin. 1989. Substitution, risk aversion, and the temporal behavior of consumption and
asset returns: A theoretical framework. Econometrica 57:937–69.

——. 1991. Substitution, risk aversion, and the temporal behavior of consumption and asset returns:An empirical
analysis. Journal of Political Economy 99:263–86.

Estrella, A., and G. A. Hardouvelis. 1991. The term structure as a predictor of real economic activity. Journal of
Finance 46:555–76.

Fadili, M., and E. Bullmore. 2002. Wavelet-generalized least squares: A new blu estimator of linear regression
models with 1/f errors. NeuroImage 15:217–32.

Fama, E. F., and K. R. French. 1989. Business conditions and expected returns on stocks and bonds. Journal of
Financial Economics 25:23–49.

Garleanu, N. B., S. Panageas, and J. Yu. 2012. Technological growth and asset pricing. Journal of Finance
67:1265–92.

Geanakoplos, J., M. Magill, and M. Quinzii. 2004. Demography and the long-run predictability of the stock
market. Brookings Papers on Economic Activity 35:241–326.

39

 at U
niversita C

om
m

erciale L
uigi B

occoni on July 10, 2013
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


[15:54 4/7/2013 RFS-hht038.tex] Page: 40 1–40

The Review of Financial Studies / v 0 n 0 2013

Gencay, R., and D. Signori. 2012. Multi-scale tests for serial correlation. Working Paper.

Ghysels, E., P. Santa-Clara, and R. Valkanov. 2004. The MIDAS touch: Mixed data sampling regression models.
Cirano Working Papers, CIRANO.

Hall, R. E. 1988. Intertemporal substitution in consumption. Journal of Political Economy 96:339–57.

Hansen, L. P., J. C. Heaton, and N. Li. 2008. Consumption strikes back? Measuring long-run risk. Journal of
Political Economy 116:260–302.

Hansen, L. P., and R. J. Hodrick. 1980. Forward exchange rates as optimal predictors of future spot rates: An
econometric analysis. Journal of Political Economy 88:829–53.

Hansen, L. P., and J. A. Scheinkman. 2009. Long-term risk: An operator approach. Econometrica 77:177–234.

Hansen, L. P., and K. J. Singleton. 1983. Stochastic consumption, risk aversion, and the temporal behavior of
asset returns. Journal of Political Economy 91:249–65.

Jagannathan, R., and Y. Wang. 2007. Lazy investors, discretionary consumption, and the cross-section of stock
returns. Journal of Finance 62:1623–61.

Kaltenbrunner, G., and L.A. Lochstoer. 2010. Long-run risk through consumption smoothing. Review of Financial
Studies 23:3190–224.

Kreps, D. M., and E. L. Porteus. 1978. Temporal resolution of uncertainty and dynamic choice theory.
Econometrica 46:185–200.

Lettau, M., and S. V. Nieuwerburgh. 2008. Reconciling the return predictability evidence. Review of Financial
Studies 21:1607–52.

Lettau, M., and J. A. Wachter. 2011. The term structures of equity and interest rates. Journal of Financial
Economics 101:90–113.

Mallat, S. G. 1989. Multiresolution approximations and wavelet orthonormal bases of L2(R). Transactions of the
American Mathematical Society 315:69–87.

——. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 11:674–93.

Moller, S. V., and J. Rangvid. 2012. End-of-the-year economic growth and time-varying expected returns.
Working Paper.

Parker, J. A., and C. Julliard. 2005. Consumption risk and the cross section of expected returns. Journal of
Political Economy 113:185–222.

Paseka, A., and G. Theocharides. 2010. Predictability in consumption growth and equity returns: A Bayesian
investigation. Financial Review 45:167–203.

Pastor, L., and P. Veronesi. 2006. Was there a Nasdaq bubble in the late 1990s? Journal of Financial Economics
81:61–100.

——. 2009. Technological revolutions and stock prices. American Economic Review 99:1451-–83.

Tamoni, A. 2011. The multi-horizon dynamics of risk and returns. SSRN eLibrary.

Torous, W., R. Valkanov, and S. Yan. 2004. On predicting stock returns with nearly integrated explanatory
variables. Journal of Business 77:937–66.

Van Binsbergen, J. H., M. W. Brandt, and R. S. Koijen. 2012. On the timing and pricing of dividends. American
Economic Review 102:1596–618.

Van Binsbergen, J. H., W. Hueskes, R. S. Koijen, and E. B. Vrugt. 2012. Equity yields. Working Paper.

Vissing-Jorgensen, A. 2002. Limited asset market participation and the elasticity of intertemporal substitution.
Journal of Political Economy 110:825–53.

Wilcox, D. W. 1992. The construction of U.S. consumption data: Some facts and their implications for empirical
work. American Economic Review 82:922–41.

40

 at U
niversita C

om
m

erciale L
uigi B

occoni on July 10, 2013
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/

	1 Introduction
	2 Persistence Heterogeneity in Consumption Growth
	2.1Decomposing time series along the persistence dimension
	2.1.1 Persistence versus white noise: An example
	2.1.2 Detecting small but persistent components
	2.1.3 Determining the optimal number of components

	2.2Filtering and identifying the consumption components

	3 Persistence Heterogeneity, Predictability, and Long-Run Valuation
	3.1Predictability of consumption and dividend growth under persistence heterogeneity
	3.2Estimating the IES under persistence heterogeneity
	3.3Persistence heterogeneity and the term structure of equity premia

	4 Robustness
	5 Conclusion
	A Data
	B The initialization of the filtering procedure



